Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.
نویسندگان
چکیده
The set of "expansion segments" of any eukaryotic 26S/28S ribosomal RNA (rRNA) gene is responsible for the bulk of the difference in length between the prokaryotic 23S rRNA gene and the eukaryotic 26S/28S rRNA gene. The expansion segments are also responsible for interspecific fluctuations in length during eukaryotic evolution. They show a consistent bias in base composition in any species; for example, they are AT rich in Drosophila melanogaster and GC rich in vertebrate species. Dot-matrix comparisons of sets of expansion segments reveal high similarities between members of a set within any 28S rRNA gene of a species, in contrast to the little or spurious similarity that exists between sets of expansion segments from distantly related species. Similarities among members of a set of expansion segments within any 28S rRNA gene cannot be accounted for by their base-compositional bias alone. In contrast, no significant similarity exists within a set of "core" segments (regions between expansion segments) of any 28S rRNA gene, although core segments are conserved between species. The set of expansion segments of a 26S/28S gene is coevolving as a unit in each species, at the same time as the family of 28S rRNA genes, as a whole, is undergoing continual homogenization, making all sets of expansion segments from all ribosomal DNA (rDNA) arrays in a species similar in sequence. Analysis of DNA simplicity of 26S/28S rRNA genes shows a direct correlation between significantly high relative simplicity factors (RSFs) and sequence similarity among a set of expansion segments. A similar correlation exists between RSF values, overall rDNA lengths, and the lengths of individual expansion segments. Such correlations suggest that most length fluctuations reflect the gain and loss of simple sequence motifs by slippage-like mechanisms. We discuss the molecular coevolution of expansion segments, which takes place against a background of slippage-like and unequal crossing-over mechanisms of turnover that are responsible for the accumulation of interspecific differences in rDNA sequences.
منابع مشابه
The sequence of 28S ribosomal RNA varies within and between human cell lines.
The primary structure of 28S ribosomal RNA constitutes a conserved core which is similar among most 23S-like rRNAs and expansion segments which occur at specific positions in the sequence. The expansion segments account for most of the size difference between prokaryotic (archaeal and eubacterial) and eukaryotic rRNAs and they exhibit a sequence variation which is unique among rRNAs. We have in...
متن کاملComplete sequences of the rRNA genes of Drosophila melanogaster.
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA s...
متن کاملEvolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
This paper examines the effects of DNA sequence evolution on RNA secondary structures and compensatory mutations. Models of the secondary structures of Drosophila melanogaster 18S ribosomal RNA (rRNA) and of the complex between 2S, 5.8S, and 28S rRNAs have been drawn on the basis of comparative and energetic criteria. The overall AU richness of the D. melanogaster rRNAs allows the resolution of...
متن کاملRibosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments
Ribosomal RNAs (rRNAs), assisted by ribosomal proteins, form the basic structure of the ribosome, and play critical roles in protein synthesis. Compared to prokaryotic ribosomes, eukaryotic ribosomes contain elongated rRNAs with several expansion segments and larger numbers of ribosomal proteins. To investigate architectural evolution and functional capability of rRNAs, we employed a Tn5 transp...
متن کاملSecondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes.
We present a secondary structure model for the entire sequence of mouse 28S rRNA (1) which is based on an extensive comparative analysis of the available eukaryotic sequences, i.e. yeast (2, 3), Physarum polycephalum (4), Xenopus laevis (5) and rat (6). It has been derived with close reference to the models previously proposed for yeast 26S rRNA (2) and for prokaryotic 23S rRNA (7-9). Examinati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 5 4 شماره
صفحات -
تاریخ انتشار 1988